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We consider the behaviour of solutions to the nonlinear shallow-water equations
which describe wave runup on a plane beach, concentrating on the behaviour at
and just behind the moving shoreline. We develop regular series expansions for
the hydrodynamic variables behind the shoreline, which are valid for any smooth
initial condition for the waveform. We then develop asymptotic descriptions of the
shoreline motion under localized initial conditions, in particular a localized Gaussian
waveform: we obtain estimates for the maximum runup and drawdown of the wave,
for its maximum velocities and the forces it is able to exert on objects in its path,
and for the conditions under which such a wave breaks down. We show how these
results may be extended to include initial velocity conditions and initial waveforms
which may be approximated as the sum of several Gaussians. Finally, we relate these
results tentatively to the observed behaviour of a tsunami.

1. Introduction
An important problem in coastal engineering and natural hazard mitigation is to

describe the runup of long waves, such as tsunamis, on a sloping beach. Over the last
fifty years several analytical and computational tools have been developed to model
the runup process. The most common models employ the depth-averaged nonlinear
shallow-water equations (NSWEs), which are valid as long as the length scale of
the free surface motion is much greater than the fluid depth (Peregrine 1972). The
NSWEs are frequently used in numerical models to predict the inundation of specific
coastlines or to investigate wave-generation processes (e.g. Titov & Synolakis 1998;
Tinti & Tonini 2005), as well as in more idealized situations to investigate the general
principles of runup.

Carrier & Greenspan (1958) developed a useful analytical approach to the problem
of runup on a plane beach, where the undisturbed fluid depth increases linearly
with distance offshore. In this approach, a hodograph transformation is used to
convert the NSWEs into a single linear equation in terms of ‘distorted time’ and
‘distorted space’ coordinates, and solutions can then be obtained by superposing
modes. Particular solutions derived using this approach have been presented by several
authors, including Synolakis (1987) and Tadepalli & Synolakis (1994); Carrier, Wu &
Yeh (2003) were the first to present a general solution to the initial-value problem.
Recently, Kânoğlu (2004) has demonstrated how to determine efficiently the shoreline
motion of Carrier et al.’s solutions, and so to relate initial conditions directly to runup
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distances, while Antuono & Brocchini (2007) have provided the first general solution
to the boundary-value problem.

The shoreline solutions presented by Kânoğlu (2004) are in general form and so
require a little effort to evaluate. The purpose of the present study is to develop
asymptotically reduced descriptions of the shoreline and near-shore hydrodynamics
for some commonly considered waveforms, and to use these to derive estimates for
quantities of physical interest such as the shoreline excursion, the forces exerted by
the wave on immersed bodies, and the conditions for the shallow-water description of
the flow to remain valid. This follows the successful development by Synolakis (1987)
and Tadepalli & Synolakis (1994) of asymptotic solutions to various boundary-value
problems in a similar limit.

In § 2 we describe the nonlinear shallow-water model for flow over a plane beach,
together with the hodograph transformation and the solutions derived by Carrier et al.
(2003); we discuss breakdown (§ 2.2) and develop expressions for the hydrodynamic
variables at the shoreline (§ 2.3). In § 3 we develop asymptotic results when the
initial condition is a single Gaussian waveform; we compare the asymptotics with
the shoreline variables under the full solution, and discuss the implications of our
results. In § 4 we extend these ideas to ‘N-waves’ composed of two Gaussians with
different sign, paying particular attention to the maximum runup and drawdown of
the shoreline and to the conditions for breakdown of these solutions. Finally, in § 5
we examine our predictions in the light of field data for a tsunami, and discuss their
contribution to the general area of wave runup modelling.

2. Mathematical development
2.1. Description of the model and the hodograph transformation

The NSWEs for flow over a beach inclined at a uniform angle α from the horizontal
are given by

∂η̂

∂t̂
+

∂

∂x̂
[ū (x̂ tan α + η̂)] = 0,

∂ū

∂t̂
+ ū

∂ū

∂x̂
+ ĝ

∂η̂

∂x̂
= 0, (2.1)

where η̂ is the surface elevation above mean sea level, ū is the depth-averaged
horizontal velocity, ĝ is the acceleration due to gravity and x̂ is a horizontal coordinate
increasing offshore and with origin at the undisturbed shoreline. We may choose some
characteristic horizontal length scale L̂ and define non-dimensional variables by

x̂ = L̂x, t̂ =

√
L̂

ĝ tan α
t, η̂ = (L̂ tan α)η, ū =

√
ĝL̂ tan αu, (2.2)

to obtain the dimensionless NSWEs (also known as the ‘beach equations’)

∂η

∂t
+

∂

∂x
[u (x + η)] = 0,

∂u

∂t
+ u

∂u

∂x
+

∂η

∂x
= 0. (2.3)

The length scale L̂ may be left indeterminate (see the discussion by Meyer 1986a, b).
For our purposes, it is convenient to define it in terms of the initial conditions of the
waveforms we will investigate: we will assume that L̂ has been chosen to coincide
with some measure of the initial position of the waveform, and remark on it on a
case-by-case basis. It should also be noted at this point that because we consider only
a plane beach, if our results are to be related to more complex bathymetries (such as
that considered by Synolakis 1987) we must restrict our analysis to cases where the
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initial waveform is within the region of constant gradient, so the ‘toe’ of the beach
lies seaward of x̂ = L̂.

To carry out the hodograph transform, we define the new independent variables
λ= t −u and q = x +η; we subsequently define σ =

√
q , noting that q > 0 throughout

the fluid domain, and that σ =0 represents the moving shoreline. (We will denote
quantities evaluated at σ = 0 by a subscript ‘sh’.) We may now define a potential
φ(σ, λ) such that

η +
1

2
u2 =

∂φ

∂λ
, and hence u = − 1

2σ

∂φ

∂σ
and η =

∂φ

∂λ
− 1

8σ 2

(
∂φ

∂σ

)2

, (2.4)

and combine the transformed NSWEs to obtain the single linear governing equation

4σ
∂2φ

∂λ2
− ∂

∂σ

(
σ

∂φ

∂σ

)
= 0. (2.5)

The Jacobian of the transformation from (x, t) to (q, λ) may be written in terms of σ

and λ as

J = − 1

8σ 4

(
∂φ

∂σ

)2

+
1

8σ 3

(
∂2φ

∂σ 2
+ 2

∂2φ

∂λ2

)
∂φ

∂σ
− 1

4σ 2

[
∂2φ

∂σ 2

∂2φ

∂λ2
−

(
∂2φ

∂λ∂σ

)2
]

− 1

σ

∂2φ

∂λ∂σ
+ 1. (2.6)

This quantity is often referred to simply as ‘the Jacobian’ of the hodograph
transformation (e.g. Synolakis 1987; Carrier et al. 2003); in contrast, Carrier &
Greenspan (1958) deal with the true Jacobian of the transformation (x, t) �→ (σ, λ),
which is given in our notation by 2σJ . We will follow the terminology of the more
recent studies, but bearing this caveat in mind.

Carrier et al. (2003) developed solutions to (2.5) using a Fourier–Bessel transform,
so the individual modes are sinusoidal in the ‘time’ variable λ, and take the form of
Bessel functions in the ‘space’ variable σ . Taking the general initial condition

φ(σ, 0) = P (σ ) = −
∫ σ

0

2σ ′u(σ ′, 0) dσ ′,
∂φ

∂λ
(σ, 0) = F (σ ) = η(σ, 0) +

1

2
u2(σ, 0), (2.7)

we may obtain (cf. equation (19) of Carrier et al. 2003)

φ(σ, λ) =

∫ ∞

0

∫ ∞

0

ζJ0(ρσ )J0(ρζ )

[
2 sin

(
λ

2
ρ

)
F (ζ ) + ρ cos

(
λ

2
ρ

)
P (ζ )

]
dρ dζ. (2.8)

Kânoğlu & Synolakis (2006) have pointed out that when u(x, 0) �= 0, the initial
condition at t = 0 does not correspond to an initial condition at λ=0. We will not
pursue this point here, but note that in the development of detailed rather than
idealized solutions to the beach equations this matter may be important (as is the
correct handling of incoming boundary data: see Antuono & Brocchini 2007).

To write (2.8) in a form which is slightly more convenient for our purposes, we
follow Kânoğlu (2004) by defining

Φ(ζ ) =
1

ζ

dF

dζ
and Π(ζ ) =

1

ζ

dP

dζ
. (2.9)
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Assuming that the fluid is initially undisturbed as x → ∞, we may then integrate by
parts to write the general solution (2.8) as

φ(σ, λ) = −
∫ ∞

0

∫ ∞

0

J0(ρσ )J1(ρζ )ζ 2

[
2 sin

(
ρλ

2

)
1

ρ
Φ(ζ ) + cos

(
ρλ

2

)
Π(ζ )

]
dζdρ,

(2.10)

where J0(x) and J1(x) are standard Bessel functions of the first kind. (Note that (2.10)
is exactly equivalent to (2.8), and we do not expect it to have significant advantages
over the earlier form of the solution for the purposes of numerical evaluation.)

2.2. Breakdown of the transformed solutions

The solutions obtained through the hodograph transformation are valid only while the
Jacobian J of the transformation remains positive: if J becomes zero or negative
within the solution domain, the solution in the original coordinates becomes
multivalued. This is sometimes interpreted as wave breaking, but it is more correct to
regard the breakdown of the solutions as a loss of mathematical consistency which ant-
icipates wave breaking, and which necessitates the use of hydrodynamic models that
make fewer approximations to the Navier–Stokes equations (e.g. Jensen, Pedersen &
Wood 2003; Grilli, Svendsen & Subramanya 1997). Although nonlinear shallow-
water theory can predict experimental results surprisingly well even when breakdown
does ‘just’ occur (Synolakis 1987), it has been found to be inadequate for strongly
steepening or breaking waves (Jensen et al. 2003; Heller, Unger & Hager 2005).

If breakdown occurs the Jacobian could first become zero anywhere in the domain
σ � 0: it is known, for example, that sufficiently large waves on a sufficiently gentle
beach break before reaching the shoreline (see, e.g., Jensen et al. 2003), and that any
wave of positive amplitude and a positive slope at the wavefront (i.e. a discontinuity
in the first spatial derivative of elevation) must break before reaching the shoreline
(Greenspan 1958). However, Meyer (1986a, b) has shown that for smooth initial data,
any breakdown within the solution domain must lead to breakdown at the shoreline;
and other studies (Carrier & Greenspan 1958; Synolakis 1987; Tinti & Tonini 2005)
have found the shoreline value of the Jacobian, Jsh(λ), to be a good diagnostic of
breakdown. (We will comment below on the results of Carrier et al. 2003, which
appeared to suggest that Jsh was not well defined.) When we come to discuss break-
down, we will make the assumption that for the smooth initial conditions we consider,
breakdown corresponds simply to the condition that Jsh(λ) = 0 for some λ> 0.

2.3. Near-shoreline expansion

Kânoğlu (2004) obtained the limiting behaviour of the solution (2.10) as σ → 0,
and thus obtained the shoreline variables xsh(λ) and ush(λ). We will extend Kânoğlu’s
results by obtaining both the leading-order terms in σ and the next-order terms
which can be used to approximate the Jacobian just behind the shoreline. To do this,
we require the first few terms in the small-σ expansions of all the first and second
derivatives of φ.

Our starting point is (2.10). We also define some labour-saving quantities,

S2n+1(λ) ≡
∫ ∞

0

∫ ∞

0

ζ 2J1(ρζ )

[
Φ(ζ )ρ2n+1 sin

(
λ

2
ρ

)
+

1

2
Π(ζ )ρ2n+2 cos

(
λ

2
ρ

)]
dρ dζ,

C2n(λ) ≡
∫ ∞

0

∫ ∞

0

ζ 2J1(ρζ )

[
Φ(ζ )ρ2n cos

(
λ

2
ρ

)
− 1

2
Π(ζ )ρ2n+1 sin

(
λ

2
ρ

)]
dρ dζ,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.11)
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where n ∈ � in each case. We note that

dC2n

dλ
= −1

2
S2n+1,

dS2n+1

dλ
=

1

2
C2(n+1), (2.12)

and hence

S2n+1(λ) = (−1)n+122n+1 d2n+1C0

dλ2n+1
, C2n(λ) = (−1)n22n d2nC0

dλ2n
. (2.13)

It is now simple to expand the various derivatives of φ(σ, λ) as power series in σ ,
obtaining

∂φ

∂λ
= −C0 +

C2

4
σ 2 − C4

64
σ 4 + O(σ 6),

∂φ

∂σ
= S1σ − S3

8
σ 3 + O(σ 5),

∂2φ

∂λ2
=

S1

2
− S3

8
σ 2 + O(σ 4),

∂2φ

∂λ∂σ
=

C2

2
σ − C4

16
σ 3 + O(σ 5),

∂2φ

∂σ 2
= S1 − 3S3

8
σ 2 + O(σ 4).

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(2.14)

We thus obtain the shoreline variables ush and ηsh , along with the near-shore
expansion for the Jacobian,

ush(λ) = −S1

2
, ηsh = −xsh = −C0 − 1

8
S2

1 (2.15)

and J ∼ Jsh + σ 2J
(2)
sh , where

Jsh =

(
1 − C2

4

)2

, J
(2)
sh =

1

16

(
1 − C2

4

)
C4 − 1

256
S2

3 . (2.16)

We note that the increase of J as σ → 0 in figure 17 of Carrier et al. (2003) gives a
misleading impression, since J tends to a finite limit as σ → 0 (cf. Synolakis 1987),
rather than growing rapidly in magnitude as the figure suggests.

It is worth considering what the behaviour of the leading-order term Jsh(λ) tells us
about the behaviour of the solution behind the shoreline. Jsh(λ) is non-negative: as
the quantity 1 − C2/4 passes through zero, Jsh may touch zero briefly but must then
increase again. If breakdown occurs at λ= λc, so C2(λc) = 4, then the second-order
term will be J

(2)
sh (λc) = −S3(λc)

2/256, which will be negative; hence there will be a
small region behind the shoreline in which J < 0 and so the solution breaks down.
This does not apply, though, in the marginal case when C2(λ) just touches the critical
value C2 = 4, so λc is a local maximum of C2(λ). In this case, S3(λc) = 0 from (2.12),
and so the second-order term also vanishes: it is straightforward to show that in this
case J ∼ C2

4σ
4/1024, so if the solution only just breaks down at the shoreline, it does

not break down behind it.
To evaluate the double integrals C2n(λ) and S2n+1(λ) efficiently, we again follow

Kânoğlu (2004). Employing standard identities (Gradshteyn & Ryzhik 2000, § 6.671),
and defining the new time-like variable β = λ/2 for convenience, we can write∫ ∞

0

ζ 2Φ(ζ )

[ ∫ ∞

0

cos(βρ)J1(ρζ )dρ

]
dζ =

∫ ∞

0

ζΦ(ζ ) dζ − β2Φ(0)

−
∫ 1

0

β3
√

1 − z2Φ ′(βz) dz (2.17)
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and∫ ∞

0

ζ 2Π(ζ )

[ ∫ ∞

0

ρ sin(βρ)J1(ρζ ) dρ

]
dζ = 2βΠ(0) +

d

dβ

∫ 1

0

β3
√

1 − z2Π ′(βz) dz.

(2.18)

This enables us to evaluate C0(λ) in terms of single integrals; applying (2.12)
repeatedly, we may obtain equivalent expressions for S1(λ), C2(λ) and so forth. All
these expressions are readily evaluated using standard routines (the results presented
below were obtained using Maple, versions 9 and 10).

3. Gaussian initial waveforms
A particularly tractable set of initial conditions to investigate are the Gaussian

waveforms introduced by Carrier et al. (2003). These waveforms are defined by the
conditions

P (ζ ) = 0, F (ζ ) = a exp[−k(ζ 2 − 1)2],

so Φ(ζ ) = −4ka(ζ 2 − 1) exp[−k(ζ 2 − 1)2].

}
(3.1)

We have defined the length scale L̂ as the offshore position of the centre x̂ = x̂0 of the
initial waveform, so in terms of Carrier et al.’s notation we take ζ0 = 1. (We note that
the toe of the beach should lie somewhat seawards of x = 1 so the initial waveform
lies almost completely within the sloping region; in the limit as k becomes large,
it will suffice if the toe of the beach is an order-unity distance beyond x = 1.) The
remaining two parameters a and k allow us to vary independently the amplitude and
steepness of the initial wave and thus to approximate a variety of smooth localized
initial waveforms. In particular, we can take a > 0 (a positive Gaussian wave, with
initial runup) or a < 0 (a negative Gaussian wave, with initial shoreline drawdown).
The absolute amplitude of the shoreline motion is proportional to |a| (Kânoğlu 2004),
and so we may expect that for sufficiently large positive or negative a the solution
will break down. We therefore expect that the solution will remain valid only within
a critical range of amplitudes a− < a < a+, where a− < 0 and a+ > 0.

3.1. Asymptotics for localized initial waveform

It is interesting to investigate what happens in the limit as the initial waveform
becomes strongly localized, k → ∞. An equivalent limit was investigated by Synolakis
(1987) and by Tadepalli & Synolakis (1994), providing useful estimates for the runup
height and wave breakdown criterion; as we will see in § 5.1, it may be a particularly
relevant regime for some tsunami events.

To do this, we develop asymptotic expressions for C0, S1 and C2 for the Gaussian
initial profiles (3.1) in the limit of large k. It is helpful to separate the integrals which
contribute to each quantity, writing

C0(β) =

∫ ∞

0

ζΦ(ζ ) dζ − β2Φ(0) − I0(β), S1(β) =
1

2
βΦ(0) + I1(β),

C2(β) = 2Φ(0) + I2(β),

⎫⎪⎬
⎪⎭ (3.2)



The near-shore behaviour of shallow-water waves 419

where

I0(β) =

∫ β

0

β
√

β2 − ζ 2Φ ′(ζ ) dζ, I1(β) =

∫ β

0

√
β2 − ζ 2[3Φ ′(ζ ) + ζΦ ′′(ζ )] dζ,

I2(β) =

∫ β

0

√
β2 − ζ 2

β
[6(ζΦ ′(ζ ))′ + ζ 2Φ (3)(ζ )] dζ.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
(3.3)

From (2.12), we have I1 = dI0/dβ and I2 =d2I0/dβ2; consequently, we need only to
evaluate I0(β) to obtain the other terms, as long as the expression for I0(β) is well
behaved.

For the initial profile (3.1), with k � 1, the contributions from the first two terms in
C0 and the first terms in S1 and C2 are exponentially small in k, so only the integrals
I0, I1 and I2 can contribute significantly to C0, S1 and C2. For this initial profile, we
can write the integral I0 in the form

I0(β) = 8kaβ

∫ β

0

f0(ζ )e−kg(ζ )dζ,

where g(ζ ) = (ζ 2 − 1)2 and f0(ζ ) =
√

β2 − ζ 2ζ [−1 + 2k(ζ 2 − 1)2].

⎫⎪⎬
⎪⎭ (3.4)

The exponential factor in the integrand suggests that when ζ = 1 lies within the range
of integration, we should seek a rescaling and expansion about this point, as in the
method of steepest descents. Our opportunity to carry out such a rescaling depends
on the relative magnitudes of |β −1| and k, and so we will investigate three regimes in
turn: first the regime β < 1 and 1−β = O(1); next the regime β > 1 and β −1 =O(1);
and finally the regime β ≈ 1, more precisely |1 − β| = O(k−1/2).

3.1.1. The regime β < 1 and 1 − β = O(1)

In the regime β < 1, g(ζ ) does not have a local minimum within the range of
integration; instead, the exponential decays away from the upper limit ζ = β . In this
case, we apply Watson’s lemma, obtaining

I0(β) ∼ 16
√

2ak2β5/2(1 − β2)2e−k(β2−1)2
∫ ∞

0

√
ε exp[−4kβ(β2 − 1)ε]dε

= a
√

2πkβ(1 − β2)1/2e−k(1−β2)2 . (3.5)

In this regime, then, I0 and hence C0 and its derivatives are exponentially small in k.
This remains the case as long as the exponent kg(ζ ) remains large, and so we may
expect this expansion to break down when (1 − β)2 ∼ k.

3.1.2. The regime β > 1 and β − 1 = O(1)

When ζ = 1 lies within the range of integration, we expect the principal
contributions to the integral to come from the region ζ − 1 = O(k−1/2). To capture
these contributions, we define a rescaled integration variable u =(ζ − 1)

√
k. We can

then write

I0(β) = 8k1/2aβ

∫ (β−1)
√

k

−
√

k

f0(u)e−kg(u)du, (3.6)
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where g(u) and f0(u) are obtained in the obvious manner from g(ζ ) and f0(ζ ). We
now expand the integrand as an asymptotic series in k, obtaining

f0(u)e−kg(u)√
β2 − 1e−4u2

∼
(
8u2 − 1

)
+

[
20u3 − 32u5 − u +

u − 8u3

β2 − 1

]
1√
k

+

[
(15u4 − 80u6 + 64u8) +

(
3
2
u2 + 32u6 − 24u4

)
β2 − 1

+

(
1
2
u2 − 4u4

)
(β2 − 1)2

]
1

k
.

(3.7)

The leading-order term in this expansion can be written as

(8u2 − 1)e−4u2

= −d(ue−4u2

)/du,

and so when it is integrated between −
√

k and (β − 1)
√

k the contributions it makes
are exponentially small in k. At the next order, all the terms of O(k−1/2) are odd in u,
so when we integrate this term over the required range, we have complete cancellation
in the region where the integrand is relatively large, and the contributions are again
exponentially small in k.

It is only at the next order in k that we find a term which does not make an
exponentially small contribution to I0. Evaluating the corresponding integral, we
obtain

I0(β) ∼ −a
√

π

4
√

k

β

(β2 − 1)3/2
[erf(2

√
k) + erf(2(β − 1)

√
k)] ∼ −a

√
π

2
√

k

β

(β2 − 1)3/2
.

We can obtain I1(β) and I2(β) either by an equivalent expansion or directly from
I0(β):

I1(β) ∼ d

dβ

(
−a

√
π

2
√

k

β

(β2 − 1)3/2

)
=

√
π

2
√

k
a

2β2 + 1

(β2 − 1)5/2
,

I2(β) ∼ d2

dβ2

(
−a

√
π

2
√

k

β

(β2 − 1)3/2

)
= −3

√
π

2
√

k
a
β(2β2 + 3)

(β2 − 1)7/2
.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.8)

Note that these terms are proportional to a/
√

k and thus to the volume of the initial
waveform: this is to be expected, since they represent the relaxation of the shoreline
towards rest at large times, and so are sensitive not to the shape of the wave but to
its magnitude.

3.1.3. The regime |β − 1| =O(k−1/2)

Finally, we consider the regime |β − 1| =O(k−1/2). To investigate this regime, we

define two rescaled variables: u =(ζ − 1)
√

k as before, and b = 2(β − 1)
√

k. We can
now write

I0 = 8k1/2aβ

∫ b/2

−
√

k

f0(u)e−kg(u)du, (3.9)

where f0(u) and g(u) are defined as before. Expanding the integrand and taking only
the leading-order term, we obtain

I0 = 8
√

2ak1/4

∫ b/2

−
√

k

(
b

2
− u

)1/2

(−1 + 8u2)e−4u2

du + O(k−1/4). (3.10)
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Neglecting exponentially small terms in k, we may let the lower limit tend to infinity;
we then make the further change of integration variable to w = b − 2u, obtaining

I0 ∼ 4ak1/4Z(b), where Z(b) =

∫ ∞

0

√
w(−1 + 2(b − w)2)e−(b−w)2dw. (3.11)

Similarly, we may obtain I1 ∼ 8ak3/4Z′(b) and I2 ∼ 16ak5/4Z′′(b). With some mani-
pulation, Z(b) and its derivatives can be expressed in terms of standard functions, but
it is simpler to use them directly. We are interested in particular in the global minimum
and maximum of Z(b) (which controls runup and rundown), of Z′(b) (which controls
shoreline velocity), and of Z′′(b) (which controls the Jacobian). It is simple to establish
that the global maximum of Z is given approximately by Z(−0.3895) ≈ 0.3981,
while the global minimum of Z is given approximately by Z(1.235) ≈ −0.1830.
The global maximum of Z′ is given approximately by Z′(−0.9810) ≈ 0.3803, and
the global minimum by Z′(0.3194) ≈ −0.6066; while the global minimum of Z′′

is given approximately by Z′′(−0.2771) ≈ −1.2479, and the global maximum by
Z′′(0.8421) ≈ 0.8916.

Finally, we can use these data to estimate the maximum and minimum values of
C0, S1 and C2 in this asymptotic limit: we have (remembering that C0 ∼ −I0, and
assuming a > 0)

−1.5926ak1/4 = Cmin
0 � C0 � Cmax

0 = 0.7318ak1/4, (3.12)

−4.8527ak3/4 = Smin
1 � S1 � Smax

1 = 3.0425ak3/4, (3.13)

−19.966ak5/4 = Cmin
2 � C2 � Cmax

2 = 14.26ak5/4. (3.14)

Crucially, the estimates obtained here for C0, S1 and C2 are asymptotically larger
than those in either of the regimes where |β − 1| � k−1/2, and we deduce that these
are estimates for the global maxima and minima of these quantities when k � 1.
We will use these results to collapse the data from a full treatment of the shoreline
hydrodynamics, and then discuss some further applications.

3.2. Convergence to the asymptotic solution

Having derived the asymptotic representation of a ‘pulse-like’ wave in the limit of
large k, it is natural to ask how well it approximates the shoreline motion for initial
waveforms with a finite value of k. We will consider first the description of the
shoreline position xsh(β), and then the description of the shoreline Jacobian Jsh(β).

3.2.1. Shoreline motion

Figure 1 illustrates the shoreline motion for a range of values of a and k, and
compares the full solutions for xsh with the ‘pulse-like’ estimates xsh ∼ −4ak1/4Z(b) +
8a2k3/2[Z′(b)]2.

Figures 1(a) and 1(b) show the convergence towards the asymptotic solution as k

increases while keeping a fixed. Although the maximum and minimum of xsh , which
occur when S1 = 0, scale with k1/4, the shape of the asymptotic solution changes
somewhat with k as the relative importance of the Z′(b) and Z(b) terms changes;
consequently, as k increases the shoreline accelerates more and more strongly, and
ultimately the solution breaks down. (This will be discussed in the next section; for
the moment we note from figure 1b that the difference between the scaled asymptotic
predictions for k =1 and k = 16 is not very great.) For a = 0.005, this breakdown
occurs around k = 20; as these figures indicate, though, below this value of k the
asymptotic estimates are reasonably good; in fact, they are only inaccurate by a
factor of order unity even for k = 1.
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Figure 1. Shoreline motion under Gaussian initial waveforms, compared with large-k
asymptotic estimates. (a), (b) Amplitude a = 0.005 and k = 1 to 16: (a) shows the unscaled
shoreline position xsh (t), while (b) shows the scaled shoreline position xsh/(4ak1/4) (solid lines)
for the same values of a and k, compared with the asymptotic estimate plotted for a =0.005
and k = 1 (heavy dashed lines), k = 16 (light dashed lines). (c), (d) Amplitude a =0.2k−5/4

and k = 4 to 64: (c) shows the unscaled shoreline position xsh (t), while (d) shows the scaled
shoreline position xsh/(4ak1/4) (solid lines) for the same values of a and k, compared with the
asymptotic estimate for ak5/4 = 0.2 (dashed line).

Figures 1(c) and (d) show the convergence towards the asymptotic solution when
we decrease a with increasing k, keeping ak5/4 fixed. This ensures that the relative
importances of the Z(b) and Z′(b) terms in the asymptotic solution are the same for
all values of k, so the rescaled shoreline positions should collapse towards a single
curve (the dashed line in figure 1d). A consequence of this is that we guarantee that
the solution does not break down with increasing k (although breakdown can be seen
in figure 1c for the curve k = 4 at around t =2.6). The convergence in figure 1(d) is
clear, and again the asymptotic solution provides a reasonable approximation for k

of order unity, even though convergence is formally rather slow: the correction term
in (3.10) decays only as k−1/4.

In general, the asymptotic solution for the shoreline accelerates later than
the finite-k shoreline, due to the neglect of contributions from the region β < 1
and |1 − β| =O(1), and it overestimates the initial excursion of the shoreline;
correspondingly, it underestimates the second excursion of the shoreline. Overall,
however, the comparison supports the use of the asymptotic solution as an
approximation to shoreline motion under waves with finite k.
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Figure 2. Critical amplitudes a± for the shoreline breakdown of an initially Gaussian wave:
(a) original amplitudes; (b) amplitudes scaled by the asymptotic factor k−5/4.

3.2.2. The behaviour of the Jacobian and solution breakdown

We now investigate the criterion for breakdown of the shoreline solutions for finite
k, evaluating the integral (2.11) for C2(β) numerically using the adaptive integration
routines in Maple 10. The critical condition on the amplitude may be written as
1 − 1

4
C2(βcrit ) = 0 for some βcrit > 0, while 1 − 1

4
C2(β) > 0 for all other values of β . We

can use the linearity of C2 to write

C2(β) = aCa=1
2 (β), where Ca=1

2 (β) = [2Φ(0; a=1) + I2(β; a=1)] . (3.15)

Here I2 is defined in (3.3), and we define Ca=1
2 (β) for notational convenience below.

Since Ca =1
2 (β) can be either positive or negative, the two critical values of a correspond

to

a− = 4
[
min

β
Ca=1

2 (β)
]−1

, a+ = 4
[
max

β
Ca=1

2 (β)
]−1

. (3.16)

It is reasonably straightforward to locate numerically the global maximum and
minimum of I2(β) over β for a given k, and thus to calculate a±. We also recall
that in the limit of large k, we expect that maxβ Ca =1

2 ≈ 14.26k5/4 and minβ Ca =1
2 ≈

−19.966k5/4, and hence a+  0.280k−5/4 and a−  −0.200k−5/4.
Figure 2 shows the results for a± across a range of k. The magnitudes of a± decrease

as k increases (figure 2a), since a steeper initial wave has more chance of breaking.
Even for quite moderate values of k, the amplitudes required for the solution not
to break down may be rather small (of the order of 10−3 and less). As figure 2(b)
demonstrates, the asymptotic result k5/4a± ∼ constant describes rather well how the
critical amplitude varies: even for k = 1, it only overestimates the critical amplitude
by roughly a factor of 2, and it becomes increasingly accurate as k increases. (The
convergence is somewhat faster for a−, i.e. a negative initial Gaussian.) From our
numerical results, a+ ≈ 0.28k−5/4, while a− ≈ −0.205k−5/4, which compares extremely
well with the asymptotic estimates. We further note from (3.12) that since the shoreline
excursion is given asymptotically by (Cmax

0 − Cmin
0 ) ≈ 2.3244|a|k1/4, we can relate the

maximum shoreline excursion E of a shallow-water solution to its source conditions
by E ∼ 2.3244a+k1/4 ≈ 0.653/k for a > 0, and E ∼ 2.3244|a−|k1/4 ≈ 0.465/k for a < 0.
This suggests that nonlinear shallow-water theory can be used to describe results with
significant shoreline motion only when their source is rather close to the shore or not
strongly spatially localized; we will see in § 5.1, however, that this does not preclude
its use for descriptions of tsunami runup.
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Figure 3. Shoreline quantities Jsh (t), xsh (t) and ush (t) for the case k =4 and (a, b) a = a+ ≈
0.0325; (c, d) a = a− ≈ −0.0343. Figures (b) and (d) are enlargements of figures (a) and
(c) respectively about the point of maximum run-down: note that ush (λ+) > 0 and ush (λ−) < 0.

Figure 3 illustrates the shoreline hydrodynamics for the critical cases when a = a±.
For both positive and negative Gaussian critical solutions, the breakdown of the
solution occurs very close to the point of maximum rundown (from § 3.1.3, we
expect the value of β at breakdown to be within O(k−1/2) of β =1). For a positive
Gaussian (figure 3b), breakdown occurs on the backwash ush > 0, very slightly before
maximum rundown; for a negative Gaussian (figure 3d), it occurs on the runup
ush < 0, very slightly after maximum rundown. Since a positive Gaussian has to run
up before running down while the first shoreline motion for a negative Gaussian is
rundown, the negative critical solution breaks down sooner than the positive one: this
corresponds to the fact that in the limit k → 0 the minimum of C2 for a > 0 always
occurs before the maximum.

Finally, we note in passing that we have also carried out a short series of numerical
experiments, using the implementation of Carrier et al.’s (2003) solution described by
Dickinson (2005), in which a was varied beyond the range a− < a <a+ for various
k; in each case breakdown of the solution occurred most readily at the shoreline,
supporting our use of Jsh as a diagnostic of breakdown. We omit the details of these
computations here as they lie outwith the main topic of the current study.

3.3. Shoreline forces and their effects

As well as using our asymptotic results for pulse-like Gaussian waves to investigate
runup and solution breakdown, it is interesting to obtain predictions for the ability of
waves to mobilise or damage sediment or larger objects in their path. Quantifying this
ability is particularly important in hazard assessment, both when assessing the likely
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impact of waves on coasts and when interpreting the traces they leave (Dawson &
Shi 2000; Nott 2003). A preliminary analysis was made by Carrier et al. (2003) by
considering the momentum flux under the wave: this describes the forces applied to
objects which occupy the full depth of the flow, and their results have recently been
extended through numerical computations by Yeh (2006). We can extend these ideas
to immersed objects with only a little effort.

In broad terms, objects immersed in a flow are subjected to two types of mobilizing
forces: turbulent drag or lift forces and forces due to pressure gradients. (The latter
have traditionally been considered insignificant for sediment, but there is increasing
interest in their role in coastal settings: see, e.g., Hoefel & Elgar 2003.) For a body with
characteristic length scale D̂ (and corresponding surface area D̂2), we may estimate
the net forces exerted by turbulent drag and the pressure gradient as, respectively,

F̂d ≈ τ̂dD̂
2 = cdρ̂ū2D̂2, F̂p ≈

∣∣∣∣∂p̂

∂x̂

∣∣∣∣ D̂3 = ĝρ̂

∣∣∣∣∂η̂

∂x̂

∣∣∣∣ D̂3, (3.17)

where cd is a dimensionless Chezy drag coefficient, ρ̂ the fluid density and p̂ the
fluid pressure. The drag coefficient cd is typically small, of order 10−3–10−2, for the
bottom friction which mobilizes sediment (Dyer 1986), but can be of order unity
when evaluating the form drag and the lift associated with flow around a large body
(Luccio et al. 1998; Yeh 2006). We note that Nott (2003) has provided more detailed
estimates of boulder mobilization based on the moments exerted on asymmetrical
bodies, but with a simpler description of the hydrodynamics. Luccio et al. (1998)
have also provided and validated experimentally a detailed model of cobble transport
under swash flow with ballistic shoreline motion: although their model is not directly
applicable to transport under a (non-breaking) tsunami, the physical assumptions
underlying it are essentially the same as those employed here.

We can write F̂d and F̂p in terms of the hodograph-transformed variables as

F̂d ≈ [cdρ̂D̂2ĝL̂ tan α]u2 = [cdρ̂D̂2ĝL̂ tan α]

(
1

2σ

∂φ

∂σ

)2

, (3.18)

F̂p ≈ [ĝρ̂D̂3 tan α]
∂η

∂x
=[ĝρ̂D̂3 tan α]

∣∣∣∣ 1

J

∂t

∂λ
− 1

∣∣∣∣ = [ĝρ̂D̂3 tan α]

∣∣∣∣ 1

J
− 1 − 1

2σJ

∂2φ

∂σ∂λ

∣∣∣∣ .

(3.19)

This expression for F̂p will grow unboundedly as the wave steepens towards
breakdown, and so we will restrict our estimates to the regime where J =O(1).

Our asymptotic results supply estimates of the magnitudes of F̂d and F̂p in terms
of the source of an incoming wave. As before, we assume that the extrema of
all hydrodynamic quantities occur at or near the shoreline, and that the incoming
waveform is relatively localized.

Assuming that the incoming wave is a Gaussian of the form (3.1), we may use the
near-shoreline estimates

u ∼ −1

2
S1(λ) ∼ 4ak3/4Z′(b),

∂2φ

∂λ∂σ
∼ 1

2
σC2(λ) ∼ 8σak5/4Z′′(b) (3.20)

to obtain

F̂d ≈ cdρ̂ĝD̂2L̂ tan α
S2

1

4
, F̂p ≈ ρ̂ĝD̂3 tan α

∣∣∣∣ C2

4 − C2

∣∣∣∣ . (3.21)
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If the wave is some way from breaking, we can approximate the final term in F̂d

simply as C2/4, and then use (3.13) and (3.14) to obtain

max |F̂d | ≈
[cd

4
ρ̂ĝD̂2L̂ tan α

]
max

λ
S2

1 (λ) = 5.887[cdρ̂ĝD̂2L̂ tan α](ak3/4)2,

max |F̂p| ≈ [ρ̂ĝD̂3 tan α] max
λ

|C2(λ)| = 19.97[ρ̂ĝD̂3 tan α]ak5/4.

⎫⎬
⎭ (3.22)

We will apply these estimates in § 5.1.2 to consider the impact of a particular tsunami
event.

3.4. Non-zero initial velocities

Our calculations so far have been carried out assuming that the initial condition
is one in which surface elevation is disturbed without a corresponding disturbance
to velocity. This is a good approximation to reality only if the initial waveform is
generated very rapidly: for example, by a seismic event in which the fault displacement
velocity is much greater than the local water wave celerity. In general, it is necessary
to consider the effects of an initial velocity field.

In principle, the initial velocity and elevation fields can be specified independently,
but it is convenient to consider them to be closely related. The standard assumption
(see, e.g., Carrier et al. 2003; Kânoğlu & Synolakis 2006) is that the velocity field is
that for a deep-water wave propagating onshore, so u(x, 0) = −(2

√
x + η(x, 0)−2

√
x)

or, with a further approximation, u(x, 0) = −η(x, 0)/
√

x. For our purposes, the first
expression is rather cumbersome, while the second introduces a singularity in the
initial velocity as x → 0 unless η(0, 0) = 0; this singularity can be eliminated
numerically, but would disrupt the asymptotic expansion we wish to carry out for
a localized waveform. We will therefore employ a further simplification appropriate
for a localized initial condition, which is to set simply u(x, 0) = −η(x, 0), so the wave
celerity is that appropriate to the centre of the initial waveform. This removes the
shoreline singularity and makes the asymptotics relatively straightforward, although
it introduces some error if we consider that velocity should be specified exactly
using the standard assumption. Certainly for detailed simulations the approach of
Kânoğlu & Synolakis (2006) for the initial value problem, or the incoming-
characteristic specification of Antuono & Brocchini (2007) for the boundary-value
problem, would be more appropriate to adopt. For reasons of analytical tractability,
we do not consider here these more correct formulations: it appears likely that their
general forms for the solution could be approximated asymptotically in the same way
as the solutions of Carrier et al. (2003), but this lies beyond the scope of the current
study.

Taking the Gaussian initial elevation described above, we have

η(x, 0) = a exp[−k(x − 1)2], u(x, 0) = −a exp[−k(x − 1)2], (3.23)

giving, with the usual approximation x = σ 2 at λ= 0,

F (σ ) = a exp[−k(σ 2 − 1)2] +
1

2
a2 exp[−2k(σ 2 − 1)2], (3.24)

P (σ ) =

∫ σ

0

2σ ′a exp[−k(σ ′2 − 1)2] dσ ′, (3.25)

and thus

Φ(ζ ) = −4ka(ζ 2 − 1) exp[−k(ζ 2 − 1)2] − 4ka2(ζ 2 − 1) exp[−2k(ζ 2 − 1)2], (3.26)

Π(ζ ) = 2a exp[−k(ζ 2 − 1)2]. (3.27)
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We require to calculate an asymptotic representation of C0(β); as before, all other
results will follow from this. Echoing § 3.1, we may write (2.17) and (2.18) as∫ ∞

0

ζ 2Φ(ζ )

[∫ ∞

0

cos (βρ) J1(ρζ ) dρ

]
dζ =

∫ ∞

0

ζΦ(ζ ) dζ − β2Φ(0) − I0(β), (3.28)∫ ∞

0

ζ 2Π(ζ )

[∫ ∞

0

ρ sin (βρ) J1(ρζ ) dρ

]
dζ = 2βΠ(0) + H0(β), (3.29)

where

I0(β) =

∫ 1

0

β3
√

1 − z2Φ ′(βz) dz, H0(β) =
d

dβ

∫ 1

0

β3
√

1 − z2Π ′(βz) dz. (3.30)

The two terms which contribute to Φ(ζ ), and thus to I0(β), are very similar in form,
and it is simple to adapt the analysis in § 3.1 to show that

I0(β) ∼ 4ak1/4Z(b) + 25/4a2k1/4Z(b
√

2), (3.31)

where Z is defined in (3.11).
Evaluating H0(β) requires only a little more effort. We may easily obtain

Π ′(ζ ) = −8akζ (ζ 2 − 1) exp[−k(ζ 2 − 1)2], (3.32)

Π ′′(ζ ) = −8ak exp[−k(ζ 2 − 1)2]{3ζ 2 − 4kζ 2(ζ 2 − 1)2 − 1}, (3.33)

and hence

H0(β) =

∫ 1

0

[2β2
√

1 − z2Π ′(βz) + β3
√

1 − z2zΠ ′′(βz)] dz

= 8ak

∫ β

0

√
β2 − ζ 2e−k(ζ 2−1)2ζ

{
−5ζ 2 + 3 + 4kζ 2(ζ 2 − 1)2

}
dζ. (3.34)

We now make the same substitutions as before, defining b = 2(β − 1)
√

k and u =
(ζ − 1)

√
k. Concentrating our attention on the regime |β − 1| = O(k−1/2), it follows

by expanding the integrand as a series in 1/k that

H0(β) ∼ 8ak23/2k−3/4

∫ b/2

−
√

k

(
b

2
− u

)1/2

(−1 + 8u2)e−4u2

du (3.35)

∼ 8ak1/4Z(b), (3.36)

where Z(b) is defined exactly as before (see (3.10)).
Putting these results together using (2.11), we have

C0(β) ∼ −I0(β) − 1
2
H0(β) ∼ −8ak1/4Z(b) − 25/4a2k1/4Z(b

√
2). (3.37)

In the regime a � 1 where the second term may be neglected, this result indicates
that by including an initial velocity calculated according to the usual assumption,
we amplify all extremal quantities associated with the shoreline motion by a factor
of 2. This solution will break down for initial amplitudes which are only a half of
the critical values calculated in § 3.2; if it does not break down then the shoreline
excursion and maximum velocities will be twice as large as those calculated in § 3.2.
This result might be anticipated physically, as including an initial velocity in this
manner ensures that the initial wave is entirely incoming (to a first approximation),
rather than splitting into incoming and outgoing waves as does the zero-velocity
initial wave (see figures 5 and 8 of Carrier et al. 2003). It underlines the importance
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of accurately representing the ‘initial’ velocity of an incoming wave when forecasting
the effects of tsunamis.

4. Other initial waveforms: Carrier et al.’s N-waves
The Gaussian initial waveform considered by Carrier et al. (2003) is relatively

simple; however, we can readily use the linearity of the shoreline quantities Cn

and Sn in Φ to construct solutions for rather more complicated initial conditions
by superimposing Gaussians of different shapes, sizes and positions. In particular,
Carrier et al. (2003) constructed various N-waves, similar but not identical to those
introduced to tsunami studies by Tadepalli & Synolakis (1994), by summing two
Gaussians of opposite sign. We can investigate the ‘pulse-like’ limit of these N-waves
in the same way as we investigated this limit for Gaussian waves, with only a minor
additional algebraic effort.

The double-Gaussian N-wave has initial condition

F (ζ ) = a exp[−k(ζ 2 − 1)2] + a2 exp
[
−k2

(
ζ 2 − ζ 2

2

)2]
, (4.1)

where ζ2 > 1, and where for an N-wave we must have aa2 < 0. This gives

Φ(ζ ) = −4ka(ζ 2 − 1) exp[−k(ζ 2 − 1)2] − 4k2a2

(
ζ 2 − ζ 2

2

)
exp

[
− k2

(
ζ 2 − ζ 2

2

)2]
. (4.2)

The limit of a localized waveform will be most interesting if the two Gaussians
narrow at the same rate and if the distance between them shrinks similarly, so
the waveforms do not simply become two non-interacting Gaussian waves. We will
confine ourselves to considering this distinguished limit: in other words, we take
k2 = κ2k and ζ2 = 1 + k−1/2∆, where κ2 and ∆ are of order unity, and we consider the
limit k → ∞ as before.

We can write C0(β) in terms of I0(β) and exponentially small contributions as
before, and furthermore write I0 as the sum of the contributions from the two
Gaussians: I0(β) = I

(1)
0 (β) + I

(2)
0 (β), where I

(1)
0 is identical to the expression (3.11)

obtained above and where

I
(2)
0 (β) = 8k2a2β

∫ β

0

√
β2 − ζ 2ζ

[
−1 + 2k2

(
ζ 2 − ζ 2

2

)2]
exp

[
−k2(ζ

2 − ζ 2
2 )2

]
dζ

= 8K2a2B

∫ B

0

√
B2 − z2z[−1 + 2K2(z

2 − 1)2] exp[−K2(z
2 − 1)2]dz, (4.3)

where we have defined B = β/ζ2 and K2 = k2ζ
4
2 . (It is not surprising that we can

scale out ζ2 in this way, given the indeterminacy of the length scale L̂ in the non-
dimensionalisation of the governing equations: see § 2.1.) The asymptotics of I

(2)
0

follow exactly as in § 3.1, and we obtain

I
(2)
0 (β) ∼ 4a2K

1/4
2 Z(b2), where b2 = 2(B − 1)

√
K2. (4.4)

Writing the two terms using the same variables, we find

b2 = 2

(
β

ζ2

− 1

) √
k2ζ

2
2 = 2

(
1 +

∆

k1/2

)√
k2

(
b

2k1/2
− ∆

k1/2

)

= 2κ
1/2
2

(
1 +

∆

k1/2

) (
b

2
− ∆

)
, (4.5)

I
(2)
0 (β) ∼ 4a2ζ2k

1/4
2 Z(b2) = 4a2

(
1 +

∆

k1/2

)
k1/4κ

1/4
2 Z(b2); (4.6)
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Figure 4. Asymptotic estimate for the shoreline elevation, ηsh (λ) ∼ I0(b), under
landslide-generated N -waves with (a) κ2 = 2 and ∆ = 3, (b) κ2 = 2 and ∆= 1.

and thus, writing A2 = a2/a < 0,

I0(β) ∼ 4ak1/4

[
Z(b) + A2κ

1/4
2

(
1 +

∆

k1/2

)
Z

(
2κ

1/2
2

(
1 +

∆

k1/2

)(
b

2
− ∆

))]
(4.7)

∼ 4ak1/4

[
Z(b) + A2κ

1/4
2 Z

(
2κ

1/2
2

(
b

2
− ∆

))]
(4.8)

≡ 4ak1/4ZN (b), (4.9)

where we have defined the quantity ZN (b) for convenience later. In a similar way, we
have I1(β) ∼ 8ak3/4Z′

N (b) and I2(β) ∼ 16ak5/4Z′′
N (b).

Before proceeding, we note that it is relatively straightforward, using the above
approach, to determine an asymptotically valid description of the shoreline hydro-
dynamics for a localized initial condition consisting of several superimposed Gaussian
waveforms. While we will not pursue this possibility here, we note it as a potentially
useful tool for future investigations of how initial conditions control wave runup.

4.1. Extremal behaviour of landslide-generated N-waves

As an application, we consider the extrema of shoreline position and the solution
breakdown condition predicted by (4.9). This expression contains, as well as the
parameters a and k, the additional parameters A2, κ2 and ∆, which together control
the shape of the initial N-wave. To avoid having to consider a three-dimensional
parameter space, we will restrict ourselves here to initial waveforms, such as example
(d) of Carrier et al. (2003), that conserve the mass of water and represent waves
generated by a submarine landslide or similar displacement. These satisfy the
additional condition that A2 = −κ

1/2
2 , leaving us with two parameters to vary.

Figure 4 illustrates the shoreline motion under two N-waves with slightly different
parameters, assuming a > 0 (a leading-elevation N-wave). Recall that the ‘N-wave’
comprises a leading positive Gaussian centred at ζ = 1 and with amplitude a and
width k−1/2, followed by a negative Gaussian centred at ζ2 = 1 + ∆k−1/2 and with
amplitude a

√
κ2 and width (kκ2)

−1/2. If the two waves are widely spaced (large values
of ∆) their contributions to shoreline motions are effectively separate: the leading
wave produces runup followed by backwash and then recovery towards mean sea
level; the following wave then arrives, causing drawdown followed by runup and
gradual retreat (figure 4a). In this limit, an extremum of shoreline position will clearly
be an extremum of one wave or the other; which it is will depend on the values of κ2

and ∆. For lower values of ∆, the backwash of the leading wave and the drawdown
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Figure 5. Extrema of the asymptotic forms for I0(b) for landslide-generated N -waves. (a) The
maximum over b of ZN (b) = I0(b)/(4ak1/4): dashed lines are contours at 0.39 and 0.398; solid
lines are contours at 0.1 to 0.35 by 0.05. (b) The minimum over b of ZN (b) = I0(b)/(4ak1/4):
the dashed line is the contour at −0.183; solid lines are contours at −0.15 to −0.8 by −0.05.

of the following wave combine constructively, increasing the maximum drawdown
(figure 4b); for still smaller ∆, the initial positive and negative Gaussians overlap
considerably, and this cancellation reduces the shoreline motion; in this case it is
debatable whether the wave should be referred to as an N-wave at all.

We will first consider the extrema of shoreline position, and then the conditions
under which these N-waves break down.

4.1.1. Extrema of shoreline position

Figures 5(a) and (b) illustrate how the ‘shape’ parameters of the N-wave, κ2 and
∆, control the extremal values of C0(λ) and thus the maximum runup and drawdown
of the shoreline. We recall from (2.15) and (4.9) that ηsh(λ) = −C0(λ) − S2

1 (λ)/8, and
that C0(λ) ∼ 4ak1/4ZN (b). For our discussion, it is simplest to consider only the case
a > 0 (a leading-elevation N-wave), noting that the linearity of shoreline extrema in
a makes it easy to reinterpret the results for a leading-depression N-wave with a < 0.
In this case, we have

max
λ

ηsh = max
λ

(−C0) ∼ −min
b

(−4ak1/4ZN (b)) = 4ak1/4 max
b

ZN (b), (4.10)

min
λ

ηsh = min
λ

(−C0) ∼ −max
b

(−4ak1/4ZN (b)) = 4ak1/4 min
b

ZN (b). (4.11)

Figure 5(a), then, describes the maximum runup height of the wave. For a
positive Gaussian (i.e. A2 = 0 and a > 0), this would be given, from (3.12), by
maxλ ηsh = 1.5926ak1/4, corresponding to maxb ZN (b) = 0.3982. As the figure indicates
(note the position of the contours at 0.39 and 0.398), for our ‘landslide-generated’ N-
waves this value is only approached in the limit as ∆ becomes large, so the following
trough does not influence the leading peak which controls the initial (and dominant)
runup. In general, the presence of the following trough always slightly reduces the
runup, but this effect only becomes pronounced for ∆ � 0.5.

In contrast, the maximum drawdown of the shoreline (figure 5b) is generally
substantially increased by the following trough compared to the value of minλ ηsh =
−0.7318ak1/4 (and thus minb ZN (b) = −0.183) attained under the Gaussian wave:
again note the position of the dashed contour in figure 5(b). Drawdown is enhanced
most when the arrival of the trough coincides with the backwash which follows the
initial runup, and so is at its greatest when ∆ is a little less than 1; for this and greater
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Figure 6. Breakdown conditions for the asymptotic solution for landslide-generated N -waves.
(a) The maximum over b of Z′′

N (b) = I2(b)/(16ak5/4): the dashed line is the contour at 0.891
(corresponding to the condition for the breakdown of a single positive Gaussian; solid lines
are contours at 1 to 5 by 0.5. (b) The minimum over b of Z′′

N (b) = I2(b)/(16ak5/4): the dashed
line is the contour at −1.248 (corresponding to the condition for the breakdown of a single
negative Gaussian); solid lines are contours at −1 to −3 by 0.5.

values of ∆, the following trough exerts a dominant control on drawdown, which
consequently depends strongly on the trough steepness κ2. (Conversely, a leading-
depression N-wave may run up further than an estimate based on either the leading
trough or the following peak would suggest.)

A final point which should be made, though, is that despite these cancellations and
the overall complexity of the shoreline motion (figure 4), the variation of the values of
the shoreline extrema as ∆ and κ2 are varied is not very great; except when ∆ is very
small and there is substantial cancellation, a very crude attempt to approximate the
initial waveform by a single Gaussian corresponding to whichever of the two waves
had the larger absolute amplitude would give estimates of the shoreline extrema
which were correct to within a factor of order unity. This suggests that the details of
the source are relatively unimportant if the overall amplitude and spatial extent of
the initial waveform are known to reasonable accuracy.

4.1.2. Conditions for solution breakdown

Figures 6(a) and (b) illustrate how the shape parameters of the N-wave, κ2 and ∆,
control the extremal values of C2(λ) and thus the tendency of the wave solution to
break down. Again we recall that the absolute amplitude and steepness of the wave
enter only through the prefactor ak5/4, and it is convenient to write the asymptotic
estimate for C2, using (4.9), as C2 ∼ 16ak5/4Z′′

N (b). The condition for breakdown of
a leading-elevation N-wave (a > 0) is then that maxb Z′′

N (b) � 4/(16ak5/4), and for
breakdown of a leading-depression N-wave (a < 0) that minb Z′′

N (b) � 4/(16ak5/4).
Plotting contours of maxb Z′′

N (b) and minb Z′′
N (b) in the (∆, κ2)-plane therefore

describes how the shape parameters control the tendency of an N-wave to break
down: the points on a given contour correspond to initial waveforms which will
break down for a corresponding given value of ak5/4. For comparison, we recall from
(3.14) that a positive Gaussian wave (a > 0, A2 = 0) breaks down if 14.26ak5/4 � 4
and a negative Gaussian wave (a < 0, A2 = 0) breaks down if 19.966ak5/4 � −4:
these correspond respectively to the contours marked in figure 6 with dashed lines,
maxb Z′′

N (b) = 0.891 and minb Z′′
N (b) = −1.248.
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Bearing this in mind, we can interpret figure 6. The first point to remark is that
only in small regions of parameter space (to the left of the leftmost branch, and below
and to the right of the rightmost branch, of the dashed contour in each figure) is
the value of |a|k5/4 required for breakdown greater than that for the Gaussian wave.
This confirms that the greater complexity of the N-wave, giving higher accelerations,
makes N-waves more liable to break down than Gaussian waves. This applies for
both leading-elevation and leading-depression waves (figures 6a and 6b respectively);
another common feature of these plots is that in the regime ∆ � 1, breakdown is
dominated by the steeper and larger-amplitude wave, so the breakdown condition
becomes almost independent of κ2 for κ2 � 1, and depends strongly on κ2 for κ2 � 1.
For lower values of ∆, the interaction between the two parts of the waveform becomes
important. For a leading-elevation N-wave (figure 6a), breakdown is encouraged when
the following trough coincides with the drawdown from the leading peak, reinforcing
the high accelerations around maximum rundown; this tends to happen when ∆

is around 0.5 to 0.6. For a leading-depression N-wave (figure 6b), there is a greater
tendency for destructive interference between the leading depression and the following
peak, which is particularly noticeable when κ2 is small (a low and wide following
peak). When the two waves are of similar dimensions, κ2 ≈ 1, breakdown is again
encouraged by values of ∆ around 0.5, but this tendency becomes less pronounced as
the following wave comes to dominate at higher κ2.

5. Discussion and conclusions
5.1. Application to a tsunami event

It is interesting to examine our results in dimensional form, using typical parameter
values for tsunamis. There are obvious dangers in applying idealized mathematical
models näıvely to complicated or ill-constrained field data, but such applications can
be suggestive and provide useful physical insight. We will briefly consider two aspects
of our results: the conditions for a tsunami to break down, with the likely formation
of an incoming bore (q.v. Heller et al. 2005; Lavigne et al. 2007); and the ability of
such a tsunami to mobilize rocky material on a beachface.

5.1.1. Wave breakdown

Taking the initial condition of a tsunami to be a positive Gaussian ‘pulse’ of the
form considered in § 3, the condition for the shallow-water solution to break down
is a � 0.28k−5/4. In dimensional terms, this becomes â � (0.28 tan α)L̂k−5/4, where
the initial waveform is given by η̂(x̂, 0) = â exp[−k̂(x̂ − L̂)2], k̂ = k/L̂2. Meanwhile, our
asymptotic estimate of the maximum runup height R̂ may be written, using (2.15)
and (3.12), as R̂ ∼ 1.59âk1/4.

We take as our prototype the earthquake-generated tsunami which struck the
coast of Java on 17 July 2006. The source location for this tsunami is reasonably
well constrained, and there were several surveys of runup heights in the immediate
aftermath (e.g. Kongko et al. 2006; Cousins et al. 2006); it is notable that some
eyewitness accounts suggest that this particular wave did break before reaching the
beach, so the runup was controlled by a post-breaking bore (Lavigne et al. 2007).
The offshore bathymetry is not, of course, precisely linear between the source and the
shore: surveys (e.g. Kongko et al. 2006) indicate nearshore beach slopes of around
0.02–0.05, while the source was around 240 km offshore in water of the order of
3000 m depth; regional bathymetric charts suggest that the source–shore bathymetry
is not monotonic, so we will consider only the propagation of the wave in the
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monotonically shallowing region within 100 km or so of the shore. The horizontal
scale of the initial disturbance appears to have been of the order of 10 km, while
various models of the tsunami inception (DCRC 2006) suggest that the initial vertical
displacement was of the order of 0.1–0.5 m.

In order-of-magnitude terms, then, we may take L̂ ∼ 105 m, k̂ ∼ 10−8 m−2 (giving
k ∼ 100) and tan α = 0.02; the breakdown condition then becomes â � 1.8 m. This
suggests that had the bathymetry been linear and laterally uniform, this particular
wave should not have broken. However, the estimated maximum wave amplitude and
that required for breakdown are rather similar in magnitude; there is clearly scope
for breakdown to be induced and runup enhanced by local bathymetric focusing
in the alongshore direction or by non-zero initial velocities (see § 3.4) or a more
complicated initial waveform (see § 4.1), while it is also possible that eyewitness
reports confused breaking of the tsunami with the breaking of long-period swell
superimposed upon it. It is also suggestive that our asymptotic estimate of the runup
height gives R̂ ∼ 0.5–2.5 m for â ≈ 0.1–0.5 m, and these estimates are somewhat lower
than the largest runup heights deduced from postevent surveys, which were up to
3.6 m in the survey by Kongko et al. (2006), 7 m in the survey by Pribadan et al.
(2006), and 15.7 m in the survey by Lavigne et al. (2007). Again, this suggests that
some focusing may have taken place, or even that the DCRC estimates of the initial
displacement underestimated the tsunamigenic potential of the earthquake (as, for
example, in the ‘slow tsunami earthquakes’ discussed by Polet & Kanamori 2000).

5.1.2. Mobilisation of rocky material

We may use the estimates for shoreline forces obtained in § 3.3 to comment on the
ability of an incoming wave to transport material on the beachface, such as boulders.
As a rough estimate, such a body will be moved if the drag and pressure-gradient
forces acting on it are of the same order as its submerged weight F̂w ∼ D̂3(ρ̂p − ρ̂)ĝ;
this means that the maximum size of body which can be mobilized by drag forces is
given by

D̂max ≈ 5.887cdρ̂

(ρ̂p − ρ̂)

â2k3/2

L̂ tan α
, (5.1)

while pressure gradients can mobilize a body if

19.97ρ̂

(ρ̂p − ρ̂)

âk5/4

L̂
� 1. (5.2)

It is apparent from this that larger and smaller bodies may feel the effects of different
forces and thus respond to different features of the hydrodynamics; this may partly
explain why boulders and fine sediment appear to follow different transport patterns
under tsunami currents, and why boulders do not follow the same sorting and grading
trends as finer material (Dawson & Shi 2000).

If we consider rocky material, ρ̂p ≈ 2650 kgm−3, a typical form drag coefficient is
cd = 1. For the Javan event considered above, we have k ∼ 100; and so we deduce
that if â = 0.5 m (giving runup distances of approximately the right magnitude),
D̂max ≈ 0.45m. This is rather smaller than some boulders are reported to have been
moved by other tsunamis (see, e.g., Nott 2003), and we note that the size of body
which can be mobilized increases strongly with the amplitude of the wave. We have
been unable to find reports of boulder mobilization by this tsunami, although it seems
to have been capable of mobilizing material of a comparable size to our estimate, as
Cousins et al. (2006) report that poorly-built brick buildings were largely destroyed



434 D. Pritchard and L. Dickinson

and the debris spread over the surrounding area. We also note that for this particular
tsunami, the criterion (5.2) was not satisfied, meaning that pressure gradient forces
are unlikely to have been important except near where wave breaking occurred.

5.2. Summary and conclusions

In this study we have derived relatively simple descriptions of the shoreline behaviour
of long waves resulting from localized initial conditions: these supply estimates of
runup distances and the forces exerted on bodies on the shore, and constrain the
applicability of nonlinear shallow-water theory to this problem.

Starting from the general solution to the beach equations obtained by Carrier et al.
(2003), we have shown how, by developing the near-shore expansion of Kânoğlu
(2004), solutions for the hydrodynamic variables near the shoreline may be obtained
by a single integration over a ‘space-like’ variable. Following Synolakis (1987), we
have obtained asymptotic results for the shoreline hydrodynamics of the Gaussian
waves introduced by Carrier et al. (2003), in the regime where the initial waves are
localized. These results provide estimates for the maximum shoreline excursion and
for the criterion for breakdown of the solution in this regime. Evaluating the full
shoreline solution indicates in particular that the asymptotic estimates for breakdown
are accurate for k � 2, in other words for only moderately steep initial waveforms.
Since the Gaussian profile is readily fitted to a wide range of initial conditions,
these results may provide a rapid and effective means of estimating without detailed
calculation whether the shallow-water solution for a given waveform will break down
or not. Our scalings for Gaussian waves also provide new estimates of how the forces
exerted by a tsunami depend on the size of the wave, which complement recent work
using simpler hydrodynamic models (Luccio et al. 1998; Nott 2003). Finally, we have
obtained equivalent results for N-waves comprising two Gaussians of opposite sign,
quantifying the extent to which the more complicated initial waveform can increase
the extrema of shoreline motion and accentuate the tendency of the wave to break
down: breakdown is particularly likely when a trailing depression follows a wider
leading peak, giving rapid accelerations around maximum drawdown.

There are clearly many aspects of tsunami hydrodynamics still to be explored;
the results we have obtained on breakdown, as well as the observations reported by
Lavigne et al. (2007), suggest that a particular priority should be to explore the fate
of a wave once breakdown has occurred somewhere in the fluid domain, and the
propagation of the ensuing bore. We suggest that this could be an important question
to which further studies using the NSWEs could give part of an answer, by supplying
the initial and boundary conditions for such a bore (see Guard, Baldock & Nielsen
2005). An additional area in which an asymptotic approach similar to ours could
be informative is the runup of waves specified by boundary rather than initial data
(Antuono & Brocchini 2007).

In conclusion, the results we have described illustrate a major strength of nonlinear
shallow-water theory, which is its susceptibility to analysis, and they indicate the
circumstances under which it is necessary to employ more detailed but expensive
modelling approaches. We believe that they may provide a useful and relatively
simple tool for researchers investigating the important problem of wave runup.
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